
MINER
LA-UR -79-241

TITLE: FERM1ON l+,%fILTONIANSWITH MONOPOLE AND QUADRUPLE

AUTHOR(S): J. N, Ginocchio

{

( 4

10s ‘

PAIRING

SLJBMITTEDTO: coiltribu~ed to the 1978 Erice Workshop on

Interacting Bosons in Nuclear Physics

and tc be published in

“Inter tir,gBosons in Nuclear Physics”

Plenum Press (Jamary 1979)

Ely ncceptmnce of this article for pualIcLtion, the
publisher recognizes the Government’~ (licenselright#
in unycopyright undthefkwernment andit~authorir.ed

representatives haw unrestricted right to reproduce in

whol~ or In purt mld article under any copyright

nccured by the publi:l%er.

The Los Alnmo~ Scientific Luborntov requeutsthat the

publisher identify this article as work performed under

thenuspicesof the [JSHR[)A.

of the university of California
LOS AlAMOS, NEW MEXIC087646

An Afltrmative Action/Equal Opporlunily Employer

(1~1”1’1.:[) s’1’,\’I’i:s
KNI:I{(; )” I{!AF:A!{(’11 ,\Nl)

l)ltVl,:l,o l’\lF;X’[” AI) MI NIS’I’I{A’I’IOA
(’ON’I’l{; \(”l” \V.710S.K\(i, :Ni

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



ABSTUCT

Shell model Hamiltonians which have a set of eigenstates made up

of only monopole and quadruple pairs are preseuted. These H:miltonians

have mzny other types of states as well. The subspace of states made

up of m;nopole and quadruple pairs have a one-to-one correspondence

to states made up of monopole and quadrupol,e bosons. Some properties

of these Hamiltonians are discussed.



FER2iION HAMILTONIANS WITH MONOPOLE AND QUADRUPLE PAIRING*

J. N. Ginocchio

Theoretical. Division, Los Alamos Scientific Laboratory
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INTRODUCTION

In this workshop we have seen evidence that the interacting
boscm model (IBM) seems to provide a unified phenomenological model
of vibrational, transitional, and rotational nuclei. The underly-
ing concept of this model is that the low-lying collective states
of “he,~vynuclei are made up of monopole and quadruple Bosons h+
and

4
‘ bosons where p = -2,-1,0,1,2. These bosons ca~ be interpre-

ted to represent correlated pairs of valence nucleons outsi?e the
closed core. Hence a natural vj.ew of the IB!Iis that it is an
approximation to the complicated shell model description of these
heav; nuclei. That is, the valence nucleons move in an average
fj.eld and the residua+ interactions produce correlated monopole,
S“t,and quadrup-le, ~, pairs of valence nucleons. The collective
low-lying states are fhen comprised mostly of these pairs, and the
effect of the many other more complicated states is mainly to
renormalize the shell model Hamiltonian and transj:ion operators.

Given this viewpoint it is natural to ask the question: Are
there sl~el.1model llamlltonians which will have a class of ei8en-
stal:.esm~dt! up only of monopolc anclq’laclrupolepairs? The answer
to the qu~’stl.onis yc:s, and I shall discuss examples of such Hamil-
tonians in this talk, Of course these Hamilton~ans will be model
}lamLltonians in the same sense that the famous pairing Hamlltonian
with dc~cneratc single-partic.le energies is a model Hamiltonian.
Ntjvc’rthcl.essthese models can be very instructive for understanding
the m~croscopic strllct{lrcof the ID’1and also may prov.[dc insight
on Ilowmore real.1.stlc.shcl~ moclel }klmiltonlans may provide: eigen-
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states made up primarily of monopole and quacirupole pairs.

DISCUSSION

The monopole and quadruple pai~ operators will be linear
combinations of nucleon pairs in spherical shell model orbits
labeled by angular mom[!nturnj and prc.jection m:

s+ = !51jaj ~(-l)j=’’’A:mA:_m (la)

2

D:
[1

= Xj;j,B. ., A]A], ~
u

(lb)
JJ

1-
where A fcreates a nucleon in orbit (j,m) and the brackets [ ,:-
mean th%< these
projection~ ,

operator~ are coupled to angular momentum J and P

[1AiA+ J =
~Zm, (jmj’m’ljj ‘JP)A]mA]m,

j j’ u- ,
(lC)

where (jmj’m’ ljj’Jv) is a Clebsch-Gordcm coefficient.

We collSider a shell model. Hamiltonian 11which has a spherical
average one-body field h and a two-body interaction V b(~twtncn
valence nucleons:

(2)

where n is the number of valence nucleons. WC are interested in

such Hamiltonians which have a class of ei~cnstates which arc linear
combination of the states made up of monopolc und quadruple nucleon
pairs:

( ,)”-”d(,t)~~
lNNdYJM} = s

where

0) , (3a)

(3b)

and N
d

is the.number of qu.aclrupolup:~i.rs.These q~laciuupol~’pairs
are co~lpled to angular n,omentum .Tanclprc)jc!ctionM, ancly re[crs to
any ai;ditional quantum numbers wllirl~may be ncc.~ssary, We refel to

the SpaCf’
i ! N f(,spanned by the states ill (3) by (S ,1)) r convrnienct’.

The ‘lee.rssaryand suffici(!nt co:lditions thilta Slell Inodc’1.
,l’,ll$NS1,QCCJ;:(jIkmll,ltonianhave a c].as:;of ej[:cInsLilLc~s ill tllc, (s

an cxt.ensiou of tllosc givrn by ‘~almi for ~encr;lllz(I(lsclll[)rity .
Unc set 01”coIl(liLIoIlsis t“tlil~ LII(J pait-(llJ(,rlIl(lr:,(1) (’I-():lL{Ilwt)-
n~lcll,onstates wllic.h arc ().lRc.nst:lt,(Jsof 11,



3

[H,St]lO}= EOS’” ~0) (4a)

[H,D~l IO)= E2D~ 10) (4b)

where 10} represents thecore oflA-nnucleons, v,here Ais the total
number of nucleons in the nucleus.

Another set of conditions is that the double commentators of
the pair operators give back the pai

[[Hsslst] = @Aloo)stst+ (00

Mt] ,D;] = (Ozb]o,)st+ (o2[

operators:

A122) D~D+

1‘++2
A\22)lD D ~

+ 2(2p2p’j22 2,P+P’)(221Alo2)stD;+yt

(5a)

(5tJ)

(5C)

+ ~~o,2,4(2P21J 127J,IJ+u’).(22\AJ 122)[D+Di”]:+U,

These conditions are very restrictive. One way to saLisfy them
is by means of group theory. Since the pair creation operators span
a six-dimensional space we look for groups which have a six-d~merl-
sional irreducible representation which contain states with angular
momentum zero and two. There are only three such groups, SU , S06
and SU If we then include single-particle levels wh%ch fi2 into

6.
g these groups, we can then construct an Hrepresentacio~.s of one 0.

which is invariant with respect to the group, and hence the condi-
tions (4) and (5) must be satisfied. However of the three groups,
only one has representations which havti angular momenta corresponding
to single-nucleon angular momenta. This group is the S06 group.
In a recent paper3 we considered a particular ex~,mple of this method
which corresponded to valence nucleons filling the (1P, of) major
shell. Other examples corresponding to other shells can be
constructed as well.

This method restricts the possible single-particle angular
momenta that arc allowed. There is another method to obtain solu–
tions which .Lsless restrictive. We will not go into the details

of this method, which will be explalr~d in a forthcoming paper, but
just E~ve thr sol~ltlon.

For this sollltion the sing.1.c--partlcleorbitals arc degenerate

~n (!nct-gy,:~s 1s the case for the exactly soluble pairing model.
Th{s feature! may not be a sc?vrrf: handicap because) for inany v.~lencc
nuc’irons thu two-bc)clyillter:lctionswill be more important than the
sln~:le-particl~lenercies.



Furthermore for this solution the single-particle orbitals
will come in groups with all j between the limits,

(6)

being nece~sary. Here k is any integer. We note that tor ‘K=I, the
orbitals are those of the (ls,Od) major shell, and for k=2, of the
(lp,(!f)major shell. Different combinations of orbitals may be
taken, as long as the k’s differ by four, so that a particular
anglllarmomentum does not eccur more than once. WC don’t feel that
this grouping has any deep physical meaning but is just a peculiarity
of the model. What is significant is that, except for the trivial
case of k=O (j=3/2 only), m ny s t,erical orbitals are needed to

$tlhave a decoupling of the (S ,11) space from the other complicated
states.

A set of Hamiltonians which are solutions of equations (4) and
(5) and hence have this decoupling feature is given by.

3
H = To S+S +~2Di; +; ~ hr Pr”P”r, (7)

r.o

t
where S is the usuai pairing mode,

J
= (4Q)-J52jm(-l)j-mA”! AtJm j-rll

(8a)

the quadruple pairing mode is,

J [- ‘~’’’f~~)i$$)~, W
k~j’ (2j+l)(2j’+1)

=Zj,j’(-1) 2-
P Q

{1

j1j2j3
where

j4j5j6
is the Wi.gner 6–j s~ymtioland,

(8c)

and Q is one-half of the total occupancy of the shcl~

These pairing modes are nornwlizccl so that they crcatc a norm(ali.zpcl
two-nucleon state,

(Olssq”lo) =( OII)J);lO) =1

The multipc~l~:opc)ra[ors art,~ivL[l l~y

[

1.

h

3 3

I
k+r-F#j’~-2~\ I.x,

Pr = 2.2 ‘(-1)
1~

(.2j+l)(2j’+1)
!
!\.A

q J?.i’ j j’k IJ i’(1

(He)

(9:1)
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with

(9b)

The integer k is the same as mentioned in (6). The multipole
operator of zero rank is just the fermion valence number operator

po=n (9C)

tt’!i
and, for the states within the (S ,D ) space , the dipole operator
is proportional to the angular momentum operator.

Because of the .l,ultipoleinteractions the energy difference for
the two nucleon spectrum is given by

6(b1-b2)
E2 - E. = ~2-~o+ 4(b3-b2) + s . (lo)

These solutions have a very important feature. The set of
states given in (3) have a one-to–one correspondence to the boson
basis,

+ N-Nd

bNdY~j= (A) (d+);:Mlob (11)

Q
and all tl.estates are Pauli allowed for N

:7
For Nd > ~,

instead of valence particles, the one-to-o[l~ correspondence 1s
between valence holes. This is consistent with the asstimption of
the IF!Mthat for the number of valence nuclcons greater khan the
half–filled shell the bosons represent the creation of a pair of
holes in the full shell.

The eigenvalues of the Hamiltonian in (7) depend on the parame-
ters of the Hamiltonian and in general need to be solved for numer-
ically. However for special values of the parameters there are
analytical expressions for the eigenvalues. One interesting case
occurs when the quadruple pairing and quadrupole-quadrupole
interaction are related by

(12a)

In that lirritnucleon seniority,
the elgenspectrum for states in t~~ ~~taD$~ffd ‘L’antum iluml>erandspace is that of an
anharmoni.c vibrator. The eigenspectrum’is given by

= (E2-EO) & (2Q+2-v)

[
v (2Q-F2-V)]+ (b3-b2) T(T+3) - ~
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(bl-b3)
+

5 [
J(J+l) - * (2f2+2-v)

1
(12b)

The allowed values of seniority are ‘limited by the total numb~r
of valence nucleons:

v=0,2, ..., 2N ; N<~O (13a)—

V=o ,2,...,2(&N); N ~1~~ (13b)

The first term in tt:eeigenvalue spectrum (12) is jllst the pairing
interaction and give~~ the main vibrational spectrum which is harmonic
in v for low J. For large v this energy difference between levels
decreases due to a Pauli correction.

The next terms in (12) split the degeneracy of the harmonic
spectrum. The eigenxvaluc T is the number of quadruple operators
which are not cotipled to zero. The allowed values are

T = %, *(V–4), . . . . lorO. (14)

For each T the allowe?. angular momenta are determined by partition-
ing T as

T=3nA+A (15)

where n
A

and A are any positive integers. The allowed angular
momenta for a given T a~~dn

A
is

J = 1,1+1 ,...,22,2A2A. (16)

Hence the a~i,jwed eigenvalues are the same as given by Arima and
Iachellot’ for the vibrational limit of the IBM.

In Fig. 1 we show a schematic representation of the vibrational
spectrum given in (12), for v < 6 which illustrates the roles of the
three terms in (12). The deta~led ordcying of the levels will
depend or] the details Of the parameters and coulcl differ from that

Given in Fig. 1.

Furthermore if we assume that the electric q~ladr~lpoleoperator——.—
is proportional to the qu,aclrupole.multipole operator giv(,n in (9a) ,

(17)

then it follows that ~he matrix [!l(?~LJnts of Q between any stat(’s

with the same seniority is exac.tLy zero: q
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v 1- J

~+

3
4+

6
3+

I
2+ .

2 4 $( b,- Q
14 +

t

($2-2)(E2-Eo)~

0+ 10( b3-b. J

4+

2+

0+

{2 I
2+

E2 - E.

Fig. 1 A schematic representation of the vibrational spectrum of
equation (12) for the lowest seniorities (v ~ 6).
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(NvT’J’}:’[Q INvTJF1) =0 . (18)
~

This means that all quadruple momcr.ts vanish and there are no BE2
tran~i~ions be~ween states in the same seniority multiplet, only
transitions between seniority multiples. Hence this gives the
selecticjn rules of the c.xtreme vibrational limit.

Another limit which has an analytical solution occurs when the
monopole and quadruple pairing are equal:

Eo=q . (19)

This gives a solution which has SO
R

symmetry. We note from (10)
that this condition doesn’t mean t at the J=O and J=2 two-nucleon
states are degenerate. We will discuss this limit in a future paper.

The reali:tic case will be somewhere between the vibrational and
S06 limits, and has to be solved numerically. However even for these
cases T, J, and M will be conserved quantum numbers. The seniority
v will be tileonly quantum number broken by tb.eHamiltonian in (7).

We l.~antt~ mphasize that the Hami ,tonian in (7) has a large
+in the (S+,D )N space.number of eigenstates not In fact this

space is only a very tir,y part of the entire shell model space.
For n=2N nucleons, the t~tal number of states is given by the
binomial factor

()ON= ;: (20)

However, the total.number of states in the (S
t tN
,D ) space is

r)7!N = N;5 . (21a)

where

~=NforN<fl/2 (21b)

and

~= fl-N for N > ~/2 (21C)—

Therefore, for ~,N large, t},cratio is

which is very small for K large, since

(22a)

(22b)
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for all values of i. Hence if only the (St,DT)N space is playing
a vital role in the collective low-lying states of real nuclei, th~
IBM does provide a very substantial reduction in the complexity of
the shell model calculation of these states.

CONCLUSION

Ne have shown that there exists fermion Harniltonians which
decouple states containing monopole and qliadrupole pairs from the
rest of the spectrum. These damiltonians have both a vibrational
(good seniority) and an S06 limit depending on the parameters of
the Hamiltonian.

We have only discussed idcnti.cal nucleons in this paper. of
course the pl:operties of the transitional and rotational nuclei
depenti crucislly on the interaction between protons and neutrons.
We will b= cble to study this aspect as well by introducing prGton-

neutron interactions into the Hamiltonians of equation (7). We
can also study the effect of the co plh~

?--R
of the other states on

the spectra of the states in the (S ,D’) . By ma ping H onto a
in the (AT,(f~)Nboson space,boson Hamiltonian HB which is active

we can stt’dy the effect of th~ Pauli principle and the effect of

the states not in the (S~,D~) space on the renormalization of the
boson Hamiltonian. We also ~.rillbe able to study the coupling of

~,D~)N space and hence study odd nucleia single-nucleon to the (S
as well. Thus by studying these, albeit schematic, fermion Hamil-
tonians we can perhaps understand the success of the phenomenolog–
ical interac~ing boson model in describing real nuclei.
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